

Всероссийский НИИ сельскохозяйственной метеорологии

Оценка средней районной урожайности зерновых культур на основе наземной и спутниковой информации с использованием метода главных компонент.

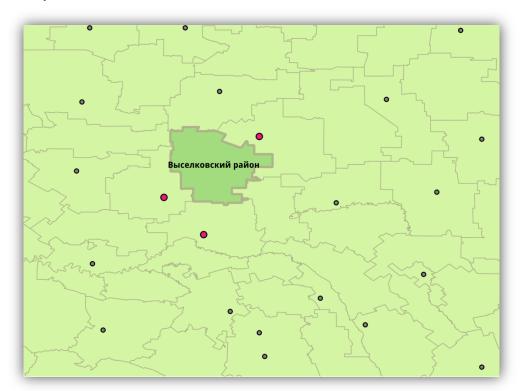
А.Д. Клещенко, О.В. Савицкая, С.А. Косякин.

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА

Основные разделы доклада

- Существующий метод расчета средней районной урожайности зерновых культур на основе спутниковой и наземной информации.
- Применение метода главных компонент для оценки средней районной урожайности зерновых культур.

Входные данные:


- Статистическая информация: **средне-районная** урожайность (Федеральная служба государственной статистики, база данных показателей муниципальных образований);
- Спутниковая информация: новый информационный продукт **IKI MODIS LAI**, **NDVI**, **VCI** (ИКИ, сервис BEГА-PRO).

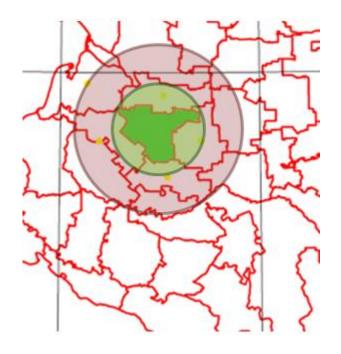
$$VCI_{\rm i} = \frac{100*({\rm NDVI}_{\rm i} - {\rm NDVI}_{\rm min})}{{\rm NDVI}_{\rm max} - {\rm NDVI}_{\rm min}} \ , \ {\rm rge\ NDVI}_{\rm i} \ - \ {\rm sharehue\ NDVI\ } \ {\rm grain} \ ;$$
 NDVI внутри всего набора данных; NDVI $_{\rm min}$ - минимальное значение NDVI внутри всего набора данных.

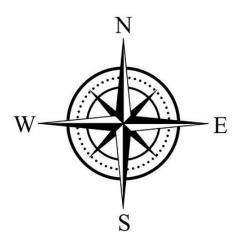
 Наземная информация: декадные и срочные агрометеорологические данные по станциям.

Метод обратных взвешенных квадратов расстояний (Ю.В. Ткачева, 2018 г.)

- Станция расположена внутри района;
- Станция внутри района отсутствует, расчет осуществляется по данным трех ближайших станций.

Ближайшая точка вносит больший вклад в интерполируемое значение, чем более удаленная.

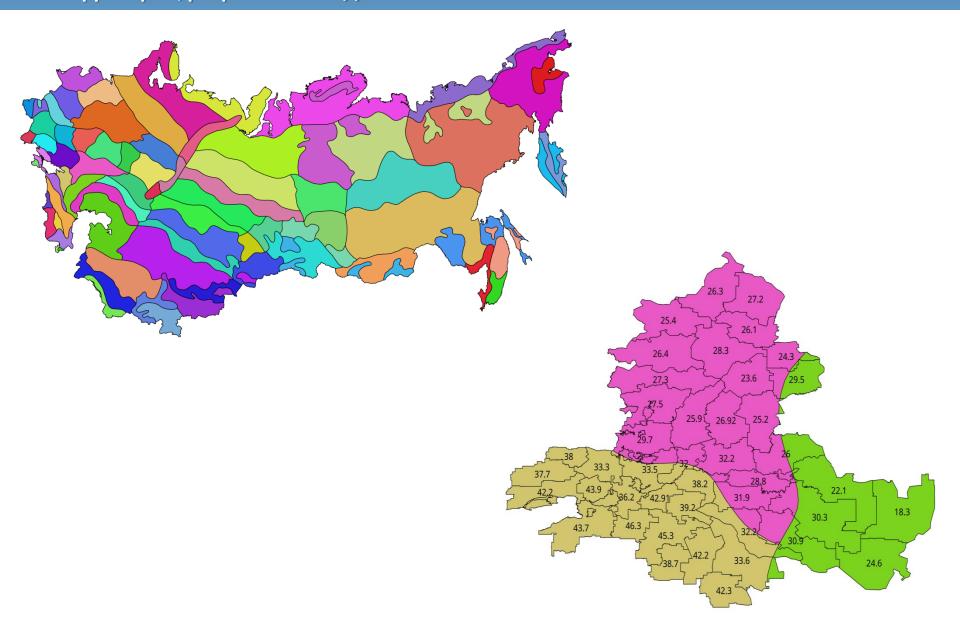

$$E = \frac{\sum_{i=1}^{n} w_i E_i}{\sum_{i=1}^{n} w_i}$$


$$\mathbf{w}_{i} = \frac{1}{\mathbf{r}_{i}^{2}}$$

где E — рассчитываемое средневзвешенное значение метеорологического параметра; $\mathbf{E}_{_{\mathrm{i}}}$ - значения метеорологического параметра в ближайших точках, попавших в заданную окрестность;

- $_{
 m W_{_{i}}}$ рассчитываемый вес і-ой точки обратная функция расстояния;
- _{г.} расстояние от точки интерполяции до i-ой точки.

Критерий выбора ближайших агрометеорологичеких станций


Первый этап— выбор оптимальной удаленности станций.

Вычисляются центы районов, граничащих с анализируемым. Максимальное расстояние от самого удаленного центра соседнего района уменьшается вдвое, если же нужное количество станций не найдено в получившемся радиусе(на рис. отмечен зеленым кругом), то берутся станции из полученного изначально радиуса (на рис. бордовый круг).

Второй этап – расположение станции по сторонам света.

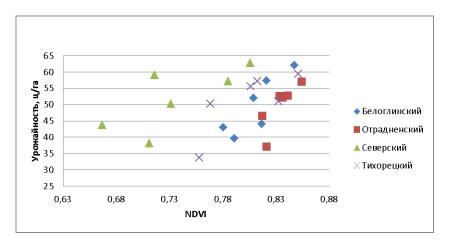
Максимальный радиус не превышает 80 км.

Дифференциация территории на зоны на основе карты агроклиматического районирования территории, разработанной Д.И. Шашко

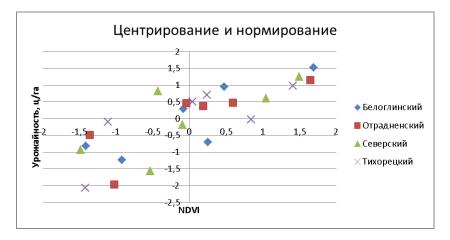
Предварительная обработка данных

- Временной диапазон 6 лет: с 2012 по 2017 гг.
- Данные по районам объединялись в группы для увеличения объема выборки.
- Центрирование и нормирование данных:

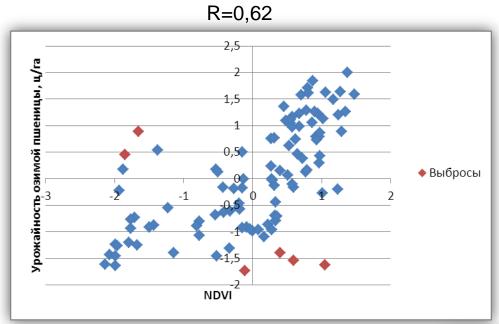
нахождение среднего


$$\overset{-}{V} = \frac{\sum\limits_{i=1}^{n} V_{i}}{n}$$

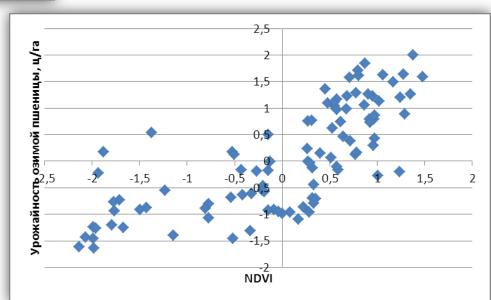
разность между исходными числами и их средним


$$X_i = V_i - V$$

нормирование, путем деления на среднеквадратическое отклонение (сигму, σ)


$$x_i = X_i / \sigma$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (V_i - V)^2}{n}}$$


Выбросы, Оренбургская область, 3 декада мая

Стандартизованные остатки выходят за пределы диапазона от -2 до 2

Стандартизированные остатки – это остатки, деленные на собственное среднеквадратическое отклонение

R = 0.74

Коэффициенты корреляции между спутниковыми индексами и средней районной урожайностью озимой пшеницы

Ростовская область

Месяц Декада	Лекада	Груп	іпа 1	Груп	іпа 2	Груг	іпа З	Груп	па 4
	NDVI	LAI	NDVI	LAI	NDVI	LAI	NDVI	LAI	
Май	1	0,78	0,87	0,80	0,88	0,76	0,79	0,82	0,88
Май	2	0,90	0,93	0,77	0,84	0,85	0,90	0,86	0,92
Май	3	0,92	0,96	0,91	0,90	0,89	0,96	0,85	0,94
Июнь	1	0,81	0,93	0,84	0,89	0,82	0,89	0,76	0,86

Волгоградская область

Месяц	Декада	Группа 1		Группа 2	
	Депада	NDVI	LAI	NDVI	LAI
Май	1	0,71	0,77	0,78	0,83
Май	2	0,89	0,91	0,86	0,86
Май	3	0,89	0,92	0,86	0,86
Июнь	1	0,87	0,89	0,81	0,84

Уточненные регрессионные модели

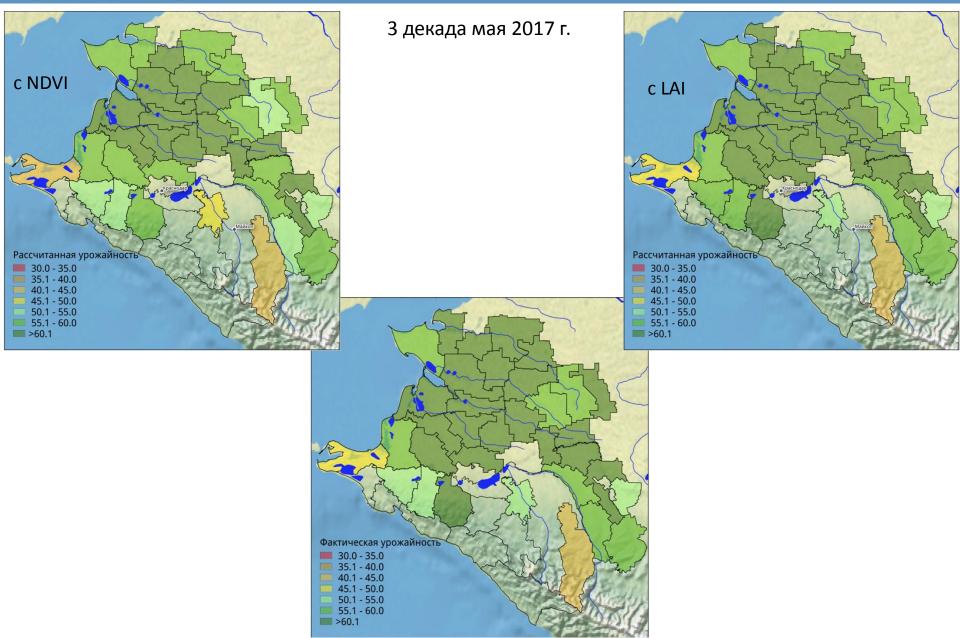
для районов Ростовской области

Месяц Декада		Коэффициенты уравнений за период 2012-2016 гг.			Коэффициенты уравнений за период 2012-2017 гг.		
	a	b	С	a	b	С	
Май	2	0	-0,44	0,51	0	-0,37	0,59
Май	3	0	-0,36	0,79	0	-0,31	0,80
Июнь	1	0	-	0,71	0	-	0,81

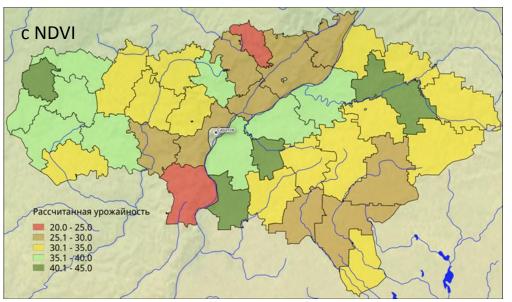
а – свободный член

b – коэффициент при дефиците влажности воздуха

с – коэффициент при NDVI

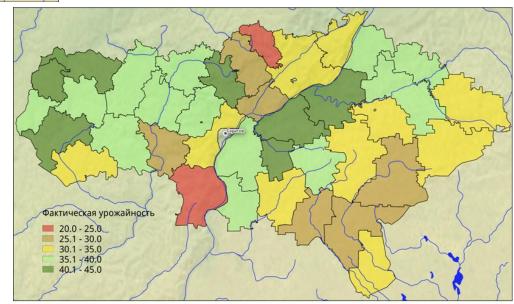

Месяц	Декада	Коэффицие	нты уравнен <i>и</i> 2012-2016 гг.		Коэффицие	нты уравнен <i>и</i> 2012-2017 гг.	
			b	С	a	b	С
Май	2	0	-0,43	0,56	0	-0,33	0,66
Май	3	0	-0,30	0,86	0	-0,22	0,87
Июнь	1	0	-	0,90	0	-	0,93

а – свободный член


b – коэффициент при дефиците влажности воздуха

с – коэффициент при LAI

Сравнение рассчитанных и фактических районных урожайностей озимой пшеницы, Краснодарский край



Сравнение рассчитанных и фактических районных урожайностей озимой пшеницы, Саратовская область

2017 июнь 1 декада

Относительная ошибка, %	Количество районов	Процент районов, %
менее 5	22 из 38	58
от 5 до 10	11 из 38	29
более 10	5 из 38	13

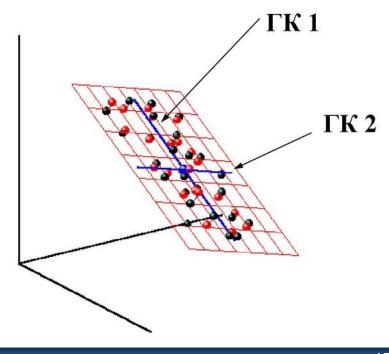
Корреляционная матрица, Ростовская область, 2 декада мая

	ndvi	lai	Т	осадки	дефицит	урожайность
ndvi	1					
lai	0,94	1				
т	-0,64	-0,65	1			
осадки	0,38	0,40	-0,55	1		
дефицит	-0,69	-0,66	0,95	-0,72	1	
урожайность	0,68	0,79	-0,65	0,76	-0,73	1

- Включение в регрессионную модель мультиколлинеарных факторов не совсем корректно.
- В этом случае оценки параметров регрессии не надежны, отсюда следует, что модель не пригодна для анализа и прогнозирования.

Метод главных компонент

Метод главных компонент ориентирован на выделение в многомерном пространстве группы тесно коррелирующих между собой переменных и замене их без потери информативности главными компонентами, между которыми корреляция отсутствует


Преимущество метода главных компонент:

- Избаление от мультиколлинеарности
- Некоррелируемость главных компонент между собой
- Эффективный способ снижения размерности данных, позволяет сохранить максимум информации в минимальном количестве переменных

Графическое представление метода главных компонент

	X 1	X 2			0.6 -	X 2		
1	0.407	0.353				A 2		
2	0.475	0.355						
3	-0.088	-0.045						
4	0.394	0.325						A A
5	0.274	0.202			0.3 -		(9 0
6	0.131	0.258				0	~ 0	0
7	-0.053	-0.031					490	
8	-0.124	-0.128					_	
9	-0.469	-0.344					0	~
10	0.088	0.171			0		0	X 1
11	-0.261	-0.162		,	~ \do	5	,	
12	0.401	0.341	-0.6	-0.3	0 0	7	0.3	0.6
13	-0.376	-0.143		0 0	, 0			
14	-0.251	-0.255		0				
15	-0.325	-0.316		000)			
16	0.464	0.248		000	-0.3 -			
17	-0.310	-0.207		0				
18	0.307	0.247						
19	-0.399	-0.303						
20	-0.253	-0.253						
21	-0.341	-0.291			-0.6	I		

- Выбирается направление, которому соответствует максимальная дисперсия, т.е. наибольшая дифференциация, разброс объектов. Это первая главная компонента (ГК1);
- Затем выбирается еще одно направление (ГК2), ортогональное к первому, так чтобы описать оставшееся изменение в данных и т.д.
- Для каждой следующей компоненты дисперсия убывает, а последняя компонента будет иметь наименьшую дисперсию

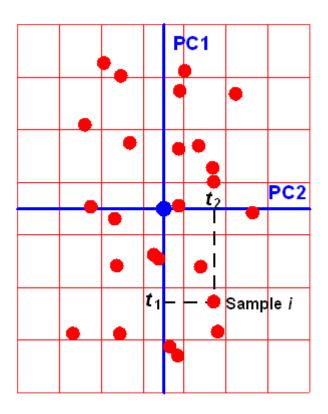
Метод главных компонент

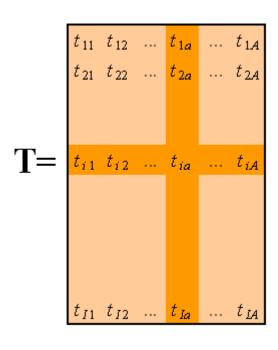
- переменные трансформируются в новые не коррелирующие друг с другом главные компоненты;
- главные компоненты являются линейными комбинациями исходных переменных;

$$T_{iA} = C_1 y_{i1} + C_2 y_{i2} + \dots + C_j y_{ij} + \dots + C_p y_{ip}$$

$$T_{(i+1)A} = C_1 y_{(i+1)} + C_2 y_{(i+1)2} + \dots + C_j y_{(i+1)j} + \dots + C_p y_{(i+1)p}$$

$$\dots$$


$$T_{IA} = C_1 y_{i1} + C_2 y_{i2} + \dots + C_j y_{ij} + \dots + C_p y_{ip}$$


где р - количество переменных;

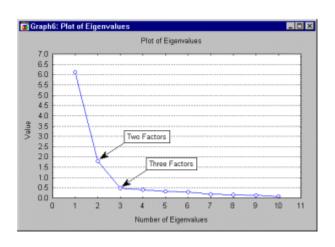
А – количество компонент, изменяется от 1 до р;

- i изменяется от 1 до I.
- I количество наблюдений;

Проекции исходных переменных на подпространство главных компонент

Матрица **T** дает проекции исходных переменных на подпространство главных компонент.

Строки матрицы Т соответствуют количеству наблюдений.


Столбцы матрицы **T** – ортогональны и представляют проекции всех переменных на одну новую координатную ось.

Выбор числа главных компонент

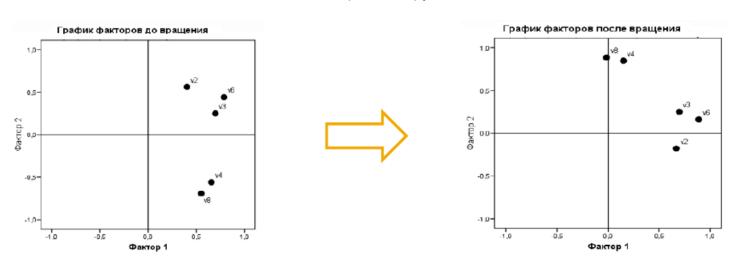
- Если число главных компонент слишком мало, то описание данных будет не полным.
- Избыточное число главных компонент приводит к переоценке, т.е. к ситуации, когда моделируется шум, а не содержательная информация.

Критерии выбора:

- Критерий Кайзера (Kaiser, 1960), отбираются только факторы, с собственными значениями, большими 1.
- Критерий каменистой осыпи (Cattell, 1966), графический метод. Находится место на графике, где убывание собственных значений слева направо максимально замедляется.

Вращение факторов

Компоненты **легко интерпретировать** если: каждая исходная переменная коррелирует только с одной компонентой; нагрузки (loadings) близки либо 1/-1, либо 0

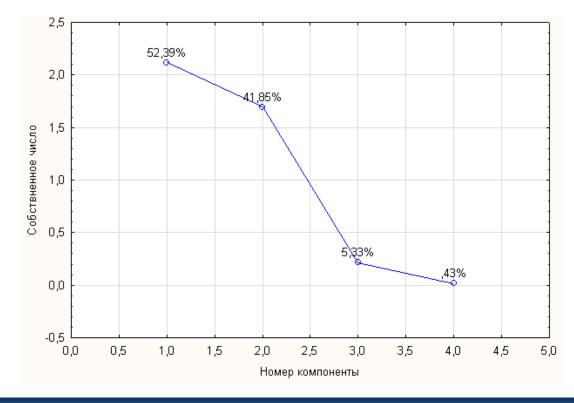

Сложно интерпретировать если: среди нагрузок (loadings) много невысоких значений; некоторые переменные почти одинаково коррелируют с несколькими компонентами

Целью вращения является, получение простой структуры, при которой каждая переменная коррелирует не более чем с одной компонентой.

Варимакс (*Varimax*) - наиболее распространенный метод вращения, при котором при сохранении ортогональности факторов минимизируется число переменных с высокой факторной нагрузкой.

Метод варимакс максимизирует дисперсию квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок.

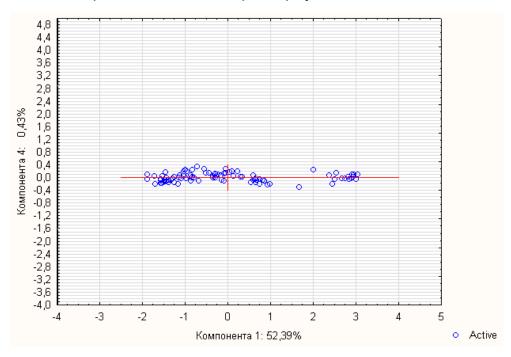
Факторные нагрузки



После поворота осей, переменные оказываются вблизи осей, что соответствует максимальной нагрузке каждой переменной только по одному фактору

Ростовская область, 1 декада мая

Компо- нента	Собствен- ные числа	% общей дисперсии	Кумулят. соб. числа.	Кумулят. % общ. дисп.
1	2,12	52,39	2,12	52,39
2	1,69	41,85	3,81	94,25
3	0,22	5,33	4,03	99,57
4	0,02	0,43	4,04	100,00


NDVI, LAI, дефицит, осадки

Коэффициенты корреляции переменных с главными компонентами, Ростовская область, 1 декада мая

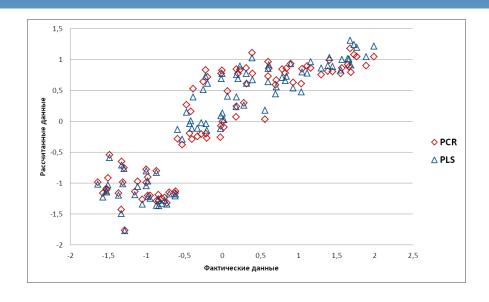
Переменная	Компонента 1	Компонента 2	Компонента 3	Компонента 4
ndvi	0,94	-0,32	0,01	0,09
lai	0,89	-0,44	0,10	-0,09
дефицит	0,28	0,91	0,32	0,01
осадки	-0,58	-0,75	0,32	0,02

Проекции точек на факторную плоскость

Ростовская область

Месяц	Декада	Коэффициенть	R		
		св. член			
Май	1	0	0,33	-0,56	0,87
Май	2	0	0,52	-	0,90
Май	3	0	0,66	-0,06	0,95
Июнь	1	0	0,67	-	0,91

Месяц	Декада	1 компонента	2 компонента
Май	1	NDVI, LAI	осадки дефицит
Май	2	NDVI, LAI дефицит	-
Май	3	NDVI, LAI	дефицит
Июнь	1	NDVI, LAI	-


Ростовская область, Рассчитанная урожайность с 2012 по 2017 гг.

Группа	Метод		Относительн	ая ошибка, %	
Группа	метод	1 декада мая	2 декада мая	3 декада мая	1 декада июня
1	Регрессия	14,8	12,1	9,9	14,8
1	МГК	12,2	11,5	8,0	11,0
2	Регрессия	23,2	23,2	11,0	15,3
2	МГК	19,2	18,6	11,5	13,0
3	Регрессия	10,5	9,9	8,7	11,3
3	МГК	10,5	9,0	6,5	8,5
4	Регрессия	14,1	12,8	12,4	14,6
4	МГК	12,9	10,4	10,4	12,0

Будущие исследования

РЛС – регрессия на латентные структуры. При построении проекционной модели учитывается связь между х и у. Критерием является моделирование той структуры (информации) в X, которая имеет корреляцию с Y.

 R^2 (МГК) – 0,75 R^2 (РЛС) – 0,79

MATLAB Neural Network Toolbox

Входные данные: главные компоненты

Метод	Относительная ошибка, %			
	1 декада мая	2 декада мая	3 декада мая	1 декада июня
Регрессия	14,8	12,1	9,9	14,8
МГК	12,2	11,5	8,0	11,0
Нейронная сеть	8,4	5,9	6,0	8,3

СПАСИБО ЗА ВНИМАНИЕ